在我们的日常生活中,许多关键设备如计算机、医疗设备、音响系统和发电机等,都依赖于磁铁的功能。我们知道计算机性能提升会带来什么样的变化,但如果磁铁能够具备更多的功能,这将会引发怎样的变革呢?如果我们能够调整其物理特性以增强其应用潜力,将会催生出怎样的创新呢?
麻省理工学院等离子体科学与聚变中心(PSFC)的研究团队,包括Hang Chi、Yunbo Ou、Jagadeesh Moodera及其合作者,在一篇新的开放获取论文《自然通讯》中探讨了这一主题,论文标题为“准二维碲化铬中应变可调的Berry曲率”。
要理解这些发现的重要性,我们需要回顾历史:1879年,23岁的研究生埃德温·霍尔(Edwin Hall)发现,当他将一块磁铁与一根通电的金属条成直角时,金属条的一侧会比另一侧积累更多的电荷。磁场使得电流中的电子偏转至金属边缘,这一现象被称为霍尔效应,以此来纪念他。
在霍尔的时代,经典物理学是唯一的理论框架,像重力和磁力这样的作用力以可预测且不可改变的方式影响物质:就像苹果掉落一样,当带电金属与磁铁形成“T”时会导致霍尔效应。但事实并非如此;如今我们知道量子力学也在其中发挥着重要作用。
可以将经典物理学比作亚利桑那州的地图,而量子力学则像是穿越沙漠的汽车旅程。地图提供了该地区的宏观视图和一般信息,但无法让司机为可能遇到的随机事件做好准备,比如一只犰狳突然穿过马路。量子空间就像司机的旅程,由一套不同的当地交通规则所控制。因此,虽然霍尔效应在经典系统中是由外加磁场引起的,但在量子情况下,即使没有外场,霍尔效应也可能发生,此时称为反常霍尔效应。
在量子领域中,人们会接触到所谓的“贝里相位”,这一概念以英国物理学家迈克尔·贝里(Michael Berry)命名。它就像汽车的GPS记录仪:司机记录了从起点到终点的整个旅程,通过分析GPS历史,可以更好地描绘出空间的“曲率”。这种量子景观的“贝里曲率”能够自然地将电子转移到一侧,在没有磁场的情况下产生霍尔效应,类似于山丘和山谷指引汽车的行驶路径。
尽管许多人已经观察到磁性材料中的异常霍尔效应,但之前没有人能够通过施加挤压或拉伸来操控它——直到这篇论文的作者开发出一种方法,证明异常霍尔效应和贝里曲率在不寻常磁铁中的变化。
首先,他们使用半毫米厚的氧化铝或钛酸锶(两者均为晶体)作为基底,并在其上生长一层极薄的碲化铬(这种磁性化合物)。这些材料本身并没有太大作用;然而,当它们结合在一起时,薄膜的磁性与其生长基底形成的界面会导致薄膜层的拉伸或挤压。
为了深入理解这些材料如何协同工作,研究人员与橡树岭国家实验室(ORNL)的散裂中子源合作进行了中子散射实验——本质上是用粒子轰击材料并研究反弹回来的结果——以获取更多关于薄膜的化学和磁性质的信息。
中子是这项研究的理想工具,因为它们具有磁性但不带电荷。中子实验使研究人员能够建立一个轮廓,揭示化学元素和磁性行为在不同层次上如何随着对材料的深入研究而变化。
研究人员观察到异常霍尔效应和贝里曲率对薄膜施加后基底上发生的挤压或拉伸程度的响应,随后通过建模和数据模拟验证了这一观察结果。
尽管这一突破发生在最小的分子水平上,但科学家的发现具有重大的现实意义。例如,硬盘驱动器将数据存储在微小的磁性区域中,如果它们是使用像薄膜这样的“应变可调”材料制造的,就可以在不同拉伸区域中存储额外的数据。
在机器人技术中,应变可调材料可以作为传感器,提供对机器人的运动和定位的精确反馈。这种材料对“软机器人”特别有用,这种机器人使用柔软灵活的部件,更好地模仿生物有机体。或者,当弯曲或变形时改变其行为的磁性设备可用于检测环境中的微小变化,或制作非常敏感的健康监测设备。
本文由麻省理工学院新闻(web.mit.edu/newsoffice/)转载,这是一个报道麻省理工学院研究、创新和教学新闻的热门网站。
本文来自作者[访客]投稿,不代表光诉信息立场,如若转载,请注明出处:https://wap.xrwohh.cn/zlan/202507-1041.html
评论列表(4条)
我是光诉信息的签约作者“访客”!
希望本篇文章《研究人员利用反常霍尔效应和贝里曲率的调控开发柔性量子磁体》能对你有所帮助!
本站[光诉信息]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:在我们的日常生活中,许多关键设备如计算机、医疗设备、音响系统和发电机等,都依赖于磁铁的功能。我们知道计算机性能提升会带来什么样的变化,但如果...